

Course Syllabus

1	Course title	Food Biotechnology
2	Course number	0603442
2	Credit hours	2 credit hours
3	Contact hours (theory, practical)	(1,3) / week
4	Prerequisites/corequisites	General Microbiology (0603301)
5	Program title	Human Nutrition and Food Science and Technology
6	Program code	42
7	Awarding institution	The University of Jordan
8	School	School of Agriculture
9	Department	Nutrition and Food Technology
10	Level of course	Third year
11	Year of study and semester (s)	First, second and summer semesters
12	Final Qualification	
13	Other department (s) involved in teaching the course	
14	Language of Instruction	English
15	Date of production/revision	2020

<u>16 Course Coordinator:</u>

Name: Prof. Hamzah Al-Qadiri Office number: 57 Phone number:22466 Email: h.qadiri@ju.edu.jo

17 Other instructors:

Name: Dr. Malik Haddadeen Office number: Phone number: 22422 Email:

18 Course Description:

As stated in the approved study plan.

General definition of biotechnology and developments in food biotechnology; principles of fermentations, genetic engineering cloning and other modern techniques of biotechnology; introducing the use of biotechnology in the production of fermented foods, production of enzymes, vitamins and proteins, and treatment of food plants wastes; tools of modern food biotechnology

19 Course aims and outcomes:

A- Aims

Upon completion of this course, the student is expected to:

A-1: Understand the definition and duties of molecular biotechnology

A-2: Describe the applied methods of biotechnology

A-3: Have advanced knowledge about production of microbial substitutes

A-4:Discuss the relationship between unit operations and biotechnological activities

A-5: Understand design and properties of different bioreactors that are used in biotechnology

A-6: Focus primarily on some of the most important aspects of food in waste bioconversion

A-7: Understand the basic concepts of molecular cloning and their applications in food and nutrition

A-8: Recognize the importance of biotechnology in the production of vitamins, growth factors, hormones and amino acids

A-9: Understand the basic concepts of transgenesis in animals and plants and their use, as well as genetically modified food

B- Intended Learning Outcomes (ILOs):

Upon successful completion of this course, students will be able to:

B-1: Realize the basic concept of biotechnology and molecular cloning

B-2: Know the principle and the mechanism of food examination by biotechnical methodologies

B-3: Understand the major steps in running a project in biotechnology for production of food substitutes and modification of food functional properties

B-4: Understand the role and the effect of different unit operations on finished biotechnical products.

B-5: Select the right design of bioreactors to run biotechnology projects

B-6: Appreciate the importance of bioconversion process of food wastes

B-7: Construct and establish biotechnology project in the field of molecular cloning

Core academic skills:

At the end of this course, students are expected to:

C-1: Gain knowledge and skills on controlling the operational conditions of biotechnology

C-2: Gain knowledge and skills about scientific research methods of preparing raw materials, biocatalysts, microbes, sample analysis

C-3: Illustrate the basic operations like O_2 transfer, mass transfer, viscosity, heat transfer etc. in biotechnology.

Personal and key skills:

At the end of this course, students are expected to know how to :

D-1: Select and construct different bioreactors

D-2: Propagate biocatalysts for biotechnology

D-3: Propose the steps and techniques in the production of food substitutes.

D-4: Relate the concepts of biotechnology and the needs in indusry.

D-5: Identify areas in biotechnology to be used in improving the efficiency of the conventional processing operations.

20. Topic Outline and Schedule:

Week	Lecture	Торіс	Evaluation Methods**	References
	1.1		Exam, Quizzes,	Clark, D. and
1	1.2	Biotechnology	Assignments	Pazdernak, N.
-	1.3	definition and overview		2012.
				Biotechnology
	2.1	•	Exam, Quizzes, Assignments	Clark, D. and Pazdernak, N.
2	2.2	Microbial technology	Assignments	2012.
	2.3	wherebolar teenhology		Biotechnology
	3.1			Clark, D. and
3	3.2	Primary and secondary	Exam, Quizzes, Assignments	Pazdernak, N.
5	3.3	metabolites		2012.
				Biotechnology
	4.1			Clark, D. and Pazdernak, N.
4	4.2	Strain selection	Exam, Quizzes,	2012.
	4.3	Strum serection	Assignments	Biotechnology
	5.1			Clark, D. and
5	5.2	Strain improvement of		Pazdernak, N.
5	5.3	industrial MO	Exam, Quizzes,	2012.
			Assignments	Biotechnology
	6.1	Methods of		
6	6.2	fermentation and bioreactors		Clark, D. and
0	6.3		Exam, Quizzes,	Pazdernak, N. 2012.
	0.3	Dioreactors	Assignments	Biotechnology
	7.1		Exam, Quizzes, Assignments	Clark, D. and
7	7.2			Pazdernak, N.
/		Downstream processing		2012.
	7.3			Biotechnology
	8.1		Exam, Quizzes,	Clark, D. and
8	8.2	Probiotic development	Assignments	Pazdernak, N. 2012.
	8.3	and medical uses		Biotechnology
	9.1		Exam, Quizzes,	Clark, D. and
0	9.2	Genetically modified	Assignments	Pazdernak, N.
9		food		2012.
	9.3			Biotechnology
	10.1	Mionobiolimanticity	Exam, Quizzes, Assignments	Clark, D. and
10	10.2	Microbial insecticides,		Pazdernak, N. 2012.
	10.3	microbial polymer		Biotechnology
				Clark, D. and
	11.1		Exam, Quizzes,	Pazdernak, N.
11	11.2	Nanobiotechnology	Assignments	2012.
	11.3			Biotechnology
12	12.1	Protein production,	Exam, Quizzes,	Clark, D. and
14	12.2	hormones, gene	Assignments	Pazdernak, N.

	12.3	engineering		2012. Biotechnology
	13.1			Clark, D. and
13	13.2	Biotech ethics,	Exam, Quizzes,	Pazdernak, N.
10	13.3	regulation, public concerns	Assignments	2012. Biotechnology
	14.1	Environment	Exam, Quizzes,	Clark, D. and
14	14.2	biotechnology, biofuels,	Assignments	Pazdernak, N.
	14.3	microbial fuel cells		2012. Biotechnology

- Teaching methods include: Synchronous lecturing/meeting; Asynchronous lecturing/meeting
- Evaluation methods include: Homework, Quiz, Exam, pre-lab quiz...etc

21 Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Тор	ic(s) Period (Week)
Midterm Exams I			Throughout the
	20		course
		1-5	
Midterm Exams II			Throughout the
	20		course
		6-10	
Homework assignments and	20		Every week
quizzes			throughout the
			course
Final Exam	40		To be
			assigned by the
		1-14	registration

22 Course Requirements (e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

23 Course Policies:

- Attendance policies: According to the regulations applied at The University of Jordan.

B- Absences from exams and handing in assignments on time: According to the regulations applied at The University of Jordan.

D- Honesty policy regarding cheating, plagiarism, misbehavior: According to the regulations applied at The University of Jordan. E- Grading policy: According to the regulations applied at The University of Jordan.

F- Available university services that support achievement in the course: According to the regulations applied at The University of Jordan.

24 References:

A- Required book(s), assigned reading and audio-visuals:
Clark, D. and Pazdernak, N. 2012. Biotechnology
B- Recommended books, materials and media:
Glazer, A.N. and Nikaido, H. 2012. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd edition
Peter, M (ed). 2012. Advances in Applied Biotechnology
Smith, J. E. Biotechnology. 2009. Cambridge University Press. Fifth edition
Saxina, S. Applied Microbiology. 2015. Springer India
Sasson, A. (ed). 2005. Industrial and Environmental Biotechnology: Achievements, Prospects, and Perceptions. UNU-IAS Report.
Walsh, G. 2007. Pharmaceutical Biotechnology Concepts and Applications. John Wiley & Sons Ltd Madigan, J., and Martinko, M. J. Brock Biology of Microorganisms, 13th ed. 2015 and 15th ed. 2018 Prentic Hall.

Internet :

- American Society for Microbiology (ASM) (www.asm.org)
- American Public Health Association (APHA) (www.apha.org)
- World Health Organzation (WHO) (www.who.org)

25 Additional information:

Suggested topics for presentations

- 1. Biofuel and microbial fuel cells
- 2. Vaccines and monoclonal antibodies
- 3. Bioremediation and biodegradation of xenobiotics
- 4. Antibiotics
- 5. Gene therapy
- 6. Insulin, glucagon, and growth hormone
- 7. Enzymes and immobilization
- 8. Microbial insecticides
- 9. Microbial polymers
- 10. Transgenesis in animals and plants

Name of Course Coordinator: Prof. Hamzah Al-Qadiri	i Signature:Date: December 15, 2020
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
Head of Curriculum Committee/Faculty:	Signature:
Dean:	- Signature: